skip to main content


Search for: All records

Creators/Authors contains: "Kim, Youngil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guaranteeing runtime integrity of embedded system software is an open problem. Trade-offs between security and other priorities (e.g., cost or performance) are inherent, and resolving them is both challenging and important. The proliferation of runtime attacks that introduce malicious code (e.g., by injection) into embedded devices has prompted a range of mitigation techniques. One popular approach is Remote Attestation (RA), whereby a trusted entity (verifier) checks the current software state of an untrusted remote device (prover). RA yields a timely authenticated snapshot of prover state that verifier uses to decide whether an attack occurred. Current RA schemes require verifier to explicitly initiate RA, based on some unclear criteria. Thus, in case of prover's compromise, verifier only learns about it late, upon the next RA instance. While sufficient for compromise detection, some applications would benefit from a more proactive, prevention-based approach. To this end, we construct CASU: Compromise Avoidance via Secure Updates. CASU is an inexpensive hardware/software co-design enforcing: (i) runtime software immutability, thus precluding any illegal software modification, and (ii) authenticated updates as the sole means of modifying software. In CASU, a successful RA instance serves as a proof of successful update, and continuous subsequent software integrity is implicit, due to the runtime immutability guarantee. This obviates the need for RA in between software updates and leads to unobtrusive integrity assurance with guarantees akin to those of prior RA techniques, with better overall performance. 
    more » « less
  2. Understanding and predicting the relationship between leaf temperature ( T leaf ) and air temperature ( T air ) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime T leaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below T air at higher temperatures (i.e., > ∼25–30°C) leading to slopes <1 in T leaf / T air relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature ( T can ) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to T can / T air slopes >1 and hysteretic behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the T can / T air relationship. Canopy structure also plays an important role in T can dynamics. Future climate warming is likely to lead to even greater T can , with attendant impacts on forest carbon cycling and mortality risk. 
    more » « less
  3. Abstract

    Temperature is a primary environmental control on ecological systems and processes at a range of spatial and temporal scales. The surface temperature of organisms is often more relevant for ecological processes than air temperature, which is much more commonly measured. Surface temperature influences—and is influenced by—a range of biological, physical, and chemical processes, providing a unique view of temperature effects on ecosystem function. Furthermore, surface temperatures vary markedly over a range of temporal and spatial scales and may diverge from air temperature by 40°C or more. Surface temperature measurements have been challenging due to sensor and computational limitations but are now feasible at high spatial and temporal resolutions using thermal imaging. Thus, significant advances in our understanding of plant and ecosystem thermal regimes and their functional consequences are now possible. Thermal measurements may be used to address many ecological questions, such as the thermal controls on plant and ecosystem metabolism and the impact of heat waves and drought. Further advances in this area will require interdisciplinary collaborations among practitioners in fields ranging from physiology to ecosystem ecology to remote sensing and geospatial analysis. In this overview, we demonstrate the feasibility, utility, and potential of thermal imaging for measuring vegetation surface temperatures across a range of scales and from measurement, analysis, and synthesis perspectives.

     
    more » « less